

CAIE Chemistry A-level

36: Organic Synthesis

(A-level only)

Notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Synthetic Routes

Synthetic routes are the routes which can be used to produce a **certain product from a starting organic compound**. It is important that you understand the different methods and **conditions** required to convert compounds to other products.

Below is a table showing the typical reactions of different functional groups and how they can be identified. This table contains both reactions from AS and the A2 course.

Homologous series	Typical reactions	Identification
Alkanes C-C	Combustion Electrophilic substitution/ free radical substitution with Br ₂ or Cl ₂ (forms haloalkanes) Cracking (forms short chain alkenes and alkanes)	
Alkenes C=C	Electrophilic addition: - Steam (forms alcohols) - Hydrogen halides (forms haloalkanes) - Halogens (forms dihaloalkanes) - Hydrogen (forms alkanes) Oxidation with H ⁺ /MnO ₄ (forms diols) Addition polymerisation (forms polymers)	React with bromine water: Decolorises in the presence of C=C.
Halogenoalkanes C-F/ C-Cl/ C-Br/ C-I	Combustion Nucleophilic substitution: - Hydrolysis (forms alcohols) - Reaction with ethanolic cyanide (forms nitriles) - Reaction with ammonia (forms primary amines) Elimination of hydrogen halide using ethanolic hydroxide ions (forms alkenes)	React with AgNO ₃ (aq), test precipitate with NH ₃ (aq): AgCl - white ppt soluble in dilute NH ₃ (aq) AgBr - cream ppt soluble in concentrated NH ₃ (aq) AgI - yellow ppt insoluble in NH ₃ (aq)
Alcohols -OH	Combustion Substitution with hydrogen halides, sulfur dichloride oxide or phosphorus(III) halides (forms haloalkanes) Ethanol and sodium (forms sodium ethoxide and hydrogen gas) Oxidation with H ⁺ /Cr ₂ O ₇ ²⁻ (forms carbonyls and carboxylic acids) Dehydration using an acid catalyst (forms alkenes) Esterification with carboxylic acids or acyl chlorides	React with H ⁺ /Cr ₂ O ₇ ²⁻ : Colour change from orange to green in the presence of primary and secondary alcohols (no change for tertiary alcohols)

Aldehydes	Oxidation with H ⁺ /Cr ₂ O ₇ ²⁻ (forms carboxylic acids)	React with 2,4-DNPH: A
-CHO	Reduction using NaBH ₄ or LiAlH ₄ (forms primary	yellow-orange precipitate is
	alcohols)	formed in the presence of a
	 <i>Nucleophilic addition</i> with HCN (forms hydroxynitriles)	carbonyl group.
		React with Tollens' reagent:
		A silver mirror is produced if
		an aldehyde is present.
		,
		React with Fehling's
		reagent: The blue solution forms a brick red precipitate in
		· · ·
		the presence of an aldehyde
		React with acidified
		potassium dichromate(VI):
		Orange solution turns green
Ketones	Reduction using NaBH ₄ or LiAlH ₄ (forms secondary	React with 2,4-DNPH: A
RCOR'	alcohols)	yellow-orange precipitate is
	 <i>Nucleophilic addition</i> with HCN (forms hydroxynitriles)	formed in the presence of a
	(carbonyl group.
Carboxylic acids	Reaction with metals, alkalis or carbonates (forms a	Test pH: pH less than 7 when
-COOH	salt and inorganic products)	measured using a pH probe
	Esterification with alcohols	React with a carbonate:
	Reduction with LiAlH₄ (forms alcohols)	effervescence as CO ₂ is
		formed
	Reaction with SOCl ₂ (forms acyl chlorides, sulfur	
	dioxide and hydrochloric acid)	
	Reaction with phosphorus(V) chloride or	
	phosphorus(III) chloride (forms acyl chlorides)	
	Oxidation of methanoic acid using Fehling's or Tollens'	
	(forms carbon dioxide and water)	
	Oxidation of ethanedioic acid using acidified	
	potassium manganate(VII) (forms water and carbon	
	dioxide)	
Esters	Acid hydrolysis (forms a carboxylic acid and an	
RCOOR'	alcohol)	
	,	
	Alkali hydrolysis (forms a carboxylate salt and an alcohol)	
A •	,	
Amines	Reaction with acids (forms a salt)	
-NH ₂		
Nitriles	Acid hydrolysis (forms a carboxylic acid and a salt)	
C≣N	Alkali hydrolysis (forms a carboxylate salt and	
	ammonia)	

Arenes	Electrophilic substitution:	
-C ₆ H ₅	- Halogen (forms chlorobenzene with Cl₂ and	
	bromobenzene with Br ₂)	
	- Nitration (forms nitrobenzene)	
	Friedel-Crafts acylation and alkylation	
	Oxidation of a side chain (forms benzoic acid)	
	Hydrogenation (forms cyclohexane)	
Phenol	Reactions with strong bases (not acidic enough to	
C ₆ H₅OH	react with carbonates)	
	Reaction with sodium (forms sodium phenoxide and hydrogen gas)	
	Reaction with diazonium salts (forms azo compounds)	
	Electrophilic substitution:	
	- Nitration using HNO ₃ (forms nitrophenol)	
	- Bromination using Br ₂ (forms bromophenol)	
Acyl chlorides	Hydrolysis with water (forms carboxylic acids and HCl)	
-COCI	Hydrolysis with sodium hydroxide (forms a carboxylate salt and water)	
	Esterification with alcohols or phenol	
	Reaction with ammonia (forms an amide and HCI)	
	Reactions with primary amines (forms an N-substituted amide)	
Amides	Acid hydrolysis (forms a carboxylic acid and	
-CONH₂	ammonium ions)	
	Alkali hydrolysis (forms a carboxylate salt and ammonia or an amine)	
	Reduction using LiAlH₄ (forms a primary amine)	

Multi-Stage Synthesis

Some organic molecules can be prepared using a **multi-stage synthesis**. Typically, this involves two stages: reactant \rightarrow intermediate \rightarrow product. It can cover more stages.

Example 1

Below is a diagram showing how ethanoic acid can be formed from chloroethane:

Example 2

2-propylamine can be formed from propene:

Analysing Synthetic Routes

When **synthesising** an organic compound, several factors are considered before deciding which synthetic route to use:

- Type of reaction addition reactions are more sustainable than substitution or elimination reactions as there are no waste products.
- Reagents renewable reagents with few safety concerns are preferred.
- By-products less harmful by-products are favoured as there would be fewer safety
 and environmental concerns. If the by-products can be used in another industry, the
 process is more sustainable.
- Conditions choose the reaction with the most energy efficient and safe conditions.

